

eSciDoc Development Environment
Coding Standards

Version: 2.1

Author: Roland Werner (ROW), Accenture

Last Changed: 05.09.2007

eSciDoc Project

Coding Standards

Distribution: eSciDoc project
team

Changed by: Michael Franke Last changed: 23.03.2011 Page: 2 of 29
Path: eSciDoc_Coding_Standards

FIZ Karlsruhe proprietary information - for eScidoc-project use only -

Revision History

Version Date Author Comments
0.1 14.12.2005 ROW Initial document
1.0 16.12.2005 ROW Applied comments from Rolf Vosskamp. Updated version for

release.
1.1 19.12.2005 ROW Applied comments from Lutz Horn.
1.2 21.12.2005 ROW Applied comments after team meeting.
1.3 13.02.2006 ROW Reviewed for sending to ZIM.
1.4 18.07.2006 BRP Adapted for using by ZIM.
1.5 19.07.2006 DOM Revision of adapted document
1.6 20.09.2006 BRP Filename and Repository changed.

Package section enhanced.
1.7 28.09.2006 DIT Applied comments after team meeting.
1.8 28.09.2006 DOM Review of changes after team meeting
1.9 10.10.2006 DIT Applied comments after review
2.0 17.01.2007 MUJ Review of Documentation chapter.
2.1 05.09.2007 FRM Review of changes after team meeting

Referenced and related documents:

eSciDoc Project

Coding Standards

Distribution: eSciDoc project
team

Changed by: Michael Franke Last changed: 23.03.2011 Page: 3 of 29
Path: eSciDoc_Coding_Standards

FIZ Karlsruhe proprietary information - for eScidoc-project use only -

Table of Content

1 OBJECTIVES 5

2 GENERAL PRINCIPLES 6
2.1 ADHERE TO THE STYLE OF THE ORIGINAL 6
2.2 ADHERE TO THE PRINCIPLE OF LEAST ASTONISHMENT 6
2.3 FOLLOW THE STANDARDS IN ALL CODE YOU PRODUCE 6
2.4 DOCUMENT ANY DEVIATIONS 6

3 NAMING STANDARDS 8
3.1 JAVA NAMING STANDARDS 8

3.1.1 General Standards 8
3.1.2 Packages 8
3.1.3 File Names 9
3.1.4 Class Names 9
3.1.5 Method Names 9
3.1.6 Member Variables Names 10
3.1.7 Local Variable Names 10
3.1.8 Constant Names 11
3.1.9 Arrays 11
3.1.10 Exception Names 12

4 GENERAL JAVA CODING STANDARDS 13
4.1 JAVA PROGRAM ORGANIZATION 13

4.1.1 Class Structure 13
4.1.2 Class Organization 13
4.1.3 Class Header 14
4.1.4 Code Layout 14
4.1.5 Class Headers 15
4.1.6 Method Headers 15
4.1.7 Indentation 15
4.1.8 Braces 16
4.1.9 Line Lengths and Line Breaks 17
4.1.10 Switch/case Layout 18

4.2 JAVA PROGRAMMING STYLE 18
4.2.1 Class Declarations 18
4.2.2 Abstract Methods 19
4.2.3 Visibility 19
4.2.4 Method Size and One Screen Rule 20
4.2.5 Exceptions 20
4.2.6 Bracing and Nesting Styles 21
4.2.7 Variables (general usage) 23
4.2.8 Instance Variables 23
4.2.9 Local Variables 23

eSciDoc Project

Coding Standards

Distribution: eSciDoc project
team

Changed by: Michael Franke Last changed: 23.03.2011 Page: 4 of 29
Path: eSciDoc_Coding_Standards

FIZ Karlsruhe proprietary information - for eScidoc-project use only -

4.2.10 Collections 24
4.2.11 Initialization 24

4.3 DOCUMENTATION FOR JAVA PROGRAMS 26
4.3.1 Comments 26
4.3.2 Classes 27
4.3.3 Methods 27
4.3.4 Variables 28
4.3.5 White Space 28

eSciDoc Project

Coding Standards

Distribution: eSciDoc project
team

Changed by: Michael Franke Last changed: 23.03.2011 Page: 5 of 29
Path: eSciDoc_Coding_Standards

FIZ Karlsruhe proprietary information - for eScidoc-project use only -

1 Objectives

This document outlines standards for programming Java code to improve development quality,
readability, and to ease maintenance by making the code more understandable for others.

The developer should make every attempt to adhere to the established criteria. These standards
are important for various reasons:

• The majority of the cost for code over its lifetime is in maintenance
• Seldom is a piece of code modified only by its original author
• Standard code is easier and quicker to read and understand for others

The document from FIZ Karlsruhe is adopted for using it in the implementation phase of the
eSciDoc applications “Publication Management” and “Scholarly Workbench”.

eSciDoc Project

Coding Standards

Distribution: eSciDoc project
team

Changed by: Michael Franke Last changed: 23.03.2011 Page: 6 of 29
Path: eSciDoc_Coding_Standards

FIZ Karlsruhe proprietary information - for eScidoc-project use only -

2 General Principles

2.1 Adhere to the Style of the Original

In general, follow the rules and guidelines documented here. However, if you make changes in a
module that obviously was coded according to different rules and guidelines, follow those while
changing that code. Following different styles within a single source file makes it more difficult to
read and understand.

2.2 Adhere to the Principle of Least Astonishment

To minimize the chances that a user will encounter something surprising in the software, adhere to
the principle of least astonishment. To achieve this, follow these main principles while developing:

Simplicity Build simple classes and simple methods.

Clarity Ensure each class, interface, method, variable, and object has a clear
purpose.
Explain where, when, why, and how to use each.

Completeness Provide the minimum functionality that any reasonable user would expect
to find and use.
Create complete documentation.

Consistency Similar entities should look and behave the same.
Create and apply standards whenever possible.

Robustness Provide predictable documented behaviour in response to errors and
exceptions.
Do not hide errors.

2.3 Follow the Standards in all Code you Produce

Often code that was originally produced only for testing makes its way into the final product.

Apply the rules and guidelines in all code you prod uce, not only in code for production.

2.4 Document any Deviations

In general, you are obliged to follow the standards described in this document. Before you decide
to ignore a rule, make sure you understand why the rule exists and what the consequences are if it
is not applied.

eSciDoc Project

Coding Standards

Distribution: eSciDoc project
team

Changed by: Michael Franke Last changed: 23.03.2011 Page: 7 of 29
Path: eSciDoc_Coding_Standards

FIZ Karlsruhe proprietary information - for eScidoc-project use only -

If you decide to violate a rule, then document, why you have done so.

eSciDoc Project

Coding Standards

Distribution: eSciDoc project
team

Changed by: Michael Franke Last changed: 23.03.2011 Page: 8 of 29
Path: eSciDoc_Coding_Standards

FIZ Karlsruhe proprietary information - for eScidoc-project use only -

3 Naming standards

3.1 Java Naming Standards

There are generally accepted naming conventions employed in Java programming which should
be followed. These are general rules to follow when naming classes and their attributes.

3.1.1 General Standards

Each class, attribute, and method name should be meaningful and descriptive of the information it
contains and/or the behavior it performs (i.e., addNewCustomer, calculateTotalAmount). Names
may not contain spaces nor may they contain abbreviations .

All names must be fully spelled out and are strictly in English, except in the case of acronyms.
However, acronyms must be treated as normal words e.g. CORBA should be used as Corba. By
treating acronyms this way, they fit into all existing naming standards e.g. asCorbaObject,
corbaReference etc. If a name is comprised of multiple words, each new word is capitalized (i.e.,
BidLine, documentCode).

Different from abbreviations, acronyms are allowed.

In general, whitespaces in the code should be used sparsely. No withespace should be used after
an opening parenthesis (“(“) / bracket (“[“) or before a closing parenthesis (“)“) / bracket (“]”).

Whitespaces should be used to separate parameters in a method declaration/call, before and after
a brace (“{“), before and after an equal sign (“=”) and in computational statements around the
operators (“+”, “-“, “/”, “*” etc.).

Examples

• SecurityFramework
• getAccountNumber(accountName)
• float rate[i] = (conversion * months) / years;

3.1.2 Packages

Package names grouping functional classes should be preceded with the prefix:

de.mpg.escidoc.

Package names grouping test classes should be preceded with the prefix:

test.

The prefix is followed by the application-, component- or architecture service name.

All package names must be entirely in lowercase.

eSciDoc Project

Coding Standards

Distribution: eSciDoc project
team

Changed by: Michael Franke Last changed: 23.03.2011 Page: 9 of 29
Path: eSciDoc_Coding_Standards

FIZ Karlsruhe proprietary information - for eScidoc-project use only -

3.1.3 File Names

Classes must be named the same as the files in which they are defined. The filename for each file
should be the public class name with the correct capitalization followed by “.java”. (e.g.
ContextManager.java should contain the public class ContextManager).

3.1.4 Class Names

Separate multi-word type names using capitalization with no intervening underscores.

Example

• ProcessParticipant
• SessionManager
• HyperLinkLabel

3.1.5 Method Names

Unlike class names, begin methods with a lowercase and separate multi-word method names
using capitalization (e.g. calculateElectricalLoad()), except for the constructor which must have the
same name as the class name with the same capitalization (e.g. Settlement()). Use simple, clear
names for methods to allow similar operations across different classes to be named consistently.

Instance methods should simply name the operation they perform on their associated object.
Methods used to read or write properties (getters and setters), should start with “get” or “set”
respectively.

Example

private String getParticipantName();
private void setParticipantName(String newParticipa ntName);

To indicate a boolean value returned by a method, name the method isXXXX. This rule does not
apply for classes conforming the JavaBeans Specification where getXXX is required even for
boolean values.

To indicate the setting of a boolean value, name the method setXXX(arg).

Example

private boolean isValid();
private void setValid(boolean valid);

Since instance methods are always invoked in the context of an object (with the exception of static
methods), their names should not encode the class name or the type of arguments expected. As
an example, a String class instance function that returns the length of the string should be simply
named length() — it should not be named stringLength(), since the context makes the meaning
clear.

Avoid the use of Object/object in any method name.

eSciDoc Project

Coding Standards

Distribution: eSciDoc project
team

Changed by: Michael Franke Last changed: 23.03.2011 Page: 10 of 29
Path: eSciDoc_Coding_Standards

FIZ Karlsruhe proprietary information - for eScidoc-project use only -

Static methods follow the same conventions as other methods.

3.1.6 Member Variables Names

Variable names always begin with a lower case letter (i.e., documentCode, name, identifier).
Variables may be polymorphic across classes, yet must be unique to its own class (For example,
Bid, BidLine, and Customer classes may each have the attribute ‘identifier’, which is unique to that
class).

• Always declare variables private. When exposing an instance variable to another object,
declare the variable private and provide public or protected methods for accessing the
variable.

• Use descriptive names for variables starting with a lower case and starting new words with
upper case.

• A variable name should not contain its own class name (Bid should not contain a
variable ‘bidIdentifier’. The variable should be named ‘identifier’. This will prevent
subclasses from inheriting variables that refer to the parent class).

• No prefix is used for local variable names.

Example

public class MyClass
{
 private String inputBuffer;

 public final void setInputBuffer(String inputBu ffer)
 {
 this.inputBuffer = inputBuffer;
 }

 public final String getInputBuffer()
 {
 return this.inputBuffer;
 }

 ...

}

3.1.7 Local Variable Names

Separate multi-word local variable names using capitalization with no intervening underscore.
Local variables should start in lowercase, and variable names should be descriptive of what the
variable’s purpose is.

• No prefix should be used for local variable names.

eSciDoc Project

Coding Standards

Distribution: eSciDoc project
team

Changed by: Michael Franke Last changed: 23.03.2011 Page: 11 of 29
Path: eSciDoc_Coding_Standards

FIZ Karlsruhe proprietary information - for eScidoc-project use only -

• Use business related names, i.e. use comprehensible names that demonstrate the role
fulfilled by the object, e.g. if it is a new customer object use newCustomer. This removes
ambiguities when there is more than one parameter of the same type e.g. ‘newCustomer’,
‘existingCustomer’ rather than ‘aCustomer1’, ‘aCustomer2’ etc.

• Never create a temporary variable named “temp” . Instead use a name that indicates
what the variable is needed for.

• Collections should be pluralized (i.e., ending in “s”) as in customerAccounts or
activeThreads.

• Avoid “hiding” names . Name hiding refers to the practice of naming a local variable,
argument, or attribute the same as that of another one of greater scope. For example, if you
have an attribute called participantName don’t create a local variable or parameter called
participantName. This makes code difficult to understand and more prone to bugs.

An exception to this rule should be the definition of setter methods, where the parameter
should have the same name as the variable, which is about to be set (see example). The
reason for this is that it is normally done in that way in the Java community and that the
standard settings of Eclipse’s auto-generation create the setter methods this way.

Example

public void createMeterReading()
{
 int counterIndex;
 Account[] customerAccounts;
 Account customerAccount;

 <statements>
}

public void setName(String name)
{
 this.name = name;
}

3.1.8 Constant Names

Use upper case for all constants, using underscores to separate multiple words. Constants are
Properties that are defined final static and are of either a simple type or String.

Example

static final int SPEED_OF_WATER = 3.10;
public static final Logger logger = Logger.getLogge r(“myclass”);
instance = new Singleton();

3.1.9 Arrays

There are two styles of declaring an array in Java:

int integerArray[] = { 1, 2, 3, 4, 5 };

eSciDoc Project

Coding Standards

Distribution: eSciDoc project
team

Changed by: Michael Franke Last changed: 23.03.2011 Page: 12 of 29
Path: eSciDoc_Coding_Standards

FIZ Karlsruhe proprietary information - for eScidoc-project use only -

int[] integerArray = { 2, 4, 6, 8 };

Use the latter style; i.e., the int[] integerArray style.

3.1.10 Exception Names

Exception names should end with the word “Exception”. Separate multi-word exception names
using capitalization with no intervening underscore and start with initial capitalization.

eSciDoc Project

Coding Standards

Distribution: eSciDoc project
team

Changed by: Michael Franke Last changed: 23.03.2011 Page: 13 of 29
Path: eSciDoc_Coding_Standards

FIZ Karlsruhe proprietary information - for eScidoc-project use only -

4 General Java Coding Standards

4.1 Java Program Organization

Coding standards and guidelines should be followed to ensure consistency. The implementation of
standardized program organization is critical to achieving quality and consistency objectives.

4.1.1 Class Structure

Only one top-level class can be defined per file.

4.1.2 Class Organization

Organize code units as follows: (a unit is a file)

• beginning comments

• package package_name

• import class_names

• class/interface documentation comment

• class/interface statement

• inner class definitions

• class/interface implementation comment, if necessary

• constants (using static final)

• class variables

• instance variables

• constructors

• finalize()

• class methods

• instance methods
o getters / setters
o instance methods

Notes:

This format should be followed unless program functionality, logical relations or viewability dictates
otherwise.

1. Instance variables and static variables except of constants should only be private. Have
public getters and setters for those that you wish to make public.

2. Define instance methods in a logical order (as determined by the developer) for each static
and instance section.

eSciDoc Project

Coding Standards

Distribution: eSciDoc project
team

Changed by: Michael Franke Last changed: 23.03.2011 Page: 14 of 29
Path: eSciDoc_Coding_Standards

FIZ Karlsruhe proprietary information - for eScidoc-project use only -

3. Only import the classes that are necessary for the program. (e.g. If your program
references the class Component, you should only import java.awt.Component rather than
import java.awt.*)

4. Getter and setter functions of the same scope (e.g. public) should be defined adjacent to
each other in pairs.

4.1.3 Class Header

The class header consists of the package name and the import section. In the import section, list
each imported class explicitly.

Example:

Right Wrong

import java.awt.Frame;
import java.awt.Graphics;
import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;
import java.applet.AppletContext;

import java.awt.*;
import java.awt.event.*;
import java.applet.*;

In addition, there should be a comment block describing the class and the author. This comment
block should be in a format suitable for generating JavaDoc documentation. The comment section
also contains the Subversion-specific keywords Author, LastChangedDate and Revision, which will
automatically be filled in by Subversion when the file is commited.

/**
 * This is a description of the class.
 * The first line of the description should
 * show a summary of the class, and subsequent
 * lines a detailed description.
 *
 * @author: $Author$, created 14.12.2005
 * @version: $Revision$ $LastChangedDate$
 */

Additionally a (non-JavaDoc) comment section can be included after the class/interface
declaration, which documents important steps (i.e. major changes/addition; simple bugfixes etc.
can be omitted) or implementation details.

4.1.4 Code Layout

A good layout strategy should accurately and consistently represent the logical structure of the
code, it should make the code readable, and it should be easy to maintain. The rules in this section
are designed to meet those criteria.

eSciDoc Project

Coding Standards

Distribution: eSciDoc project
team

Changed by: Michael Franke Last changed: 23.03.2011 Page: 15 of 29
Path: eSciDoc_Coding_Standards

FIZ Karlsruhe proprietary information - for eScidoc-project use only -

4.1.5 Class Headers

• Write class headers on a single line if there is room for it.

• If not, break the line before extends and implements. Indent succeeding lines.

• Put the opening brace in the next line of the class header.

Example

public class OvernightAirDeliveryItem
 extends DeliveryItem implements Serializable
{

4.1.6 Method Headers

• Align parameters if distributed over several lines.

• Make each parameter final if there is no good reason against it.

• Put the opening brace in the next line of the method header.

Example

public boolean isReadyToBeShipped(final boolean pai dFor,
 final boolean ord erFilled,
 final boolean add ressVerified)
{

4.1.7 Indentation

Indentation is 4 blanks. You can configure the IDE to automatically replace tabs by blanks. In
Eclipse this can be done in ‘Window’ | ‘Preferences…’ by navigating to ‘Java’ � ‘Code Style’ �
‘Formatter’, and creating a new profile (in case a built-in profile is used) or changing a existing one.
The ‘Tab policy’ should be set to ‘Spaces only’ and the Indentation size as well as the Tab size
should be set to ‘4’ (see screenshot below).

eSciDoc Project

Coding Standards

Distribution: eSciDoc project
team

Changed by: Michael Franke Last changed: 23.03.2011 Page: 16 of 29
Path: eSciDoc_Coding_Standards

FIZ Karlsruhe proprietary information - for eScidoc-project use only -

4.1.8 Braces

Always use (curly) braces, even for blocks with only one statement. This removes one common
source of bugs and eases maintenance:

1. You can insert or remove statements within a block without worrying about adding or
removing braces.

2. You never have a problem matching else clauses to if clauses.

Example:

Right Wrong

if (clickedRow < currentIndex)
{
 myTopRow = currentIndex + 1;
}
else if (currentIndex < myTopRow)
{
 myTopRow = currentIndex;

if (clickedRow < currentIndex)
 myTopRow = currentIndex + 1;
else if (currentIndex < myTopRow)
 myTopRow = currentIndex;

eSciDoc Project

Coding Standards

Distribution: eSciDoc project
team

Changed by: Michael Franke Last changed: 23.03.2011 Page: 17 of 29
Path: eSciDoc_Coding_Standards

FIZ Karlsruhe proprietary information - for eScidoc-project use only -

}

This rule applies to the following constructs:

• for, while and do-while loops

• if-else statements

• try, catch and finally clauses

• synchronized blocks

4.1.9 Line Lengths and Line Breaks

• One statement per line.

• If you must break a line, indent the continuation line(s).

• Break lines at least after a maximum of 120 characters.

• If you must break a line, make it obvious by ending the first line with something that needs
a continuation:

1. Break assignments after the assignment operator.

2. Break arithmetic and logical expressions after an operator.

3. Break the line to emphasize major sub-expressions.

4. Break method invocations after the opening parenthesis. If the parameter list still won’t
fit, break between each parameter or between each logical group of parameters if this
seems better.

5. If you need to break conditional expressions (e.g., in if or while-statements), follow rule
2 above.

• Using extra variables to hold partial (intermediate) expressions can help you avoid line
breaks and at the same time improve readability by making the code self-documenting.

Original condition

if (clickTime - myPreviousClick < DOUBLECLICK_TIME &&
 mySelection == rowClicked)
{
 ...
}

eSciDoc Project

Coding Standards

Distribution: eSciDoc project
team

Changed by: Michael Franke Last changed: 23.03.2011 Page: 18 of 29
Path: eSciDoc_Coding_Standards

FIZ Karlsruhe proprietary information - for eScidoc-project use only -

Possible rewrite

final long clickInterval = clickTime – myPreviousCl k;
final boolean doubleClick = (clickInterval < DOUBLE CLICK_TIME);
final boolean clickedSameRow = (mySelection == rowC licked);

if (doubleClick && clickedSameRow)
{
 ...
}

4.1.10 Switch/case Layout

• Indent each case one tab level from the switch.

4.2 Java Programming Style

This section integrates the standards and guidelines defined above into an overall programming
style. This style should be emulated as closely as possible while developing Java applications.

4.2.1 Class Declarations

Summarized from above, the following is an example of a class declaration (without
documentation):

public class Circle
{
 public static final float PI = 3.14F;
 private float area;
 private float radius;

 public Circle()
 {
 this(1);
 }

 public Circle(float radius)
 {
 super();
 this.radius = radius;
 calculateArea();
 }

 public float getArea()
 {
 return area;
 }

 public void setArea(float area)
 {
 this.area = area;
 }

eSciDoc Project

Coding Standards

Distribution: eSciDoc project
team

Changed by: Michael Franke Last changed: 23.03.2011 Page: 19 of 29
Path: eSciDoc_Coding_Standards

FIZ Karlsruhe proprietary information - for eScidoc-project use only -

 public float getRadius()
 {
 return radius;
 }

 public void setRadius(float radius)
 {
 this.radius = radius;
 calculateArea();
 }

 private void calculateArea()
 {
 setArea((float)Math.pow(PI * radius, 2));
 }
}

4.2.2 Abstract Methods

Use abstract methods for classes which will not be instantiated i.e. which are to be superclasses
for some class hierarchy. Only define abstract methods for operations that need to be defined in
derived classes. Interface methods (for example) are implicitly abstract. If a class implements at
least one abstract method, the class should be explicitly declared as abstract.

4.2.3 Visibility

Be as restrictive as possible when setting the visibility of a method. If a method doesn’t have to be
public, then make it protected, if it doesn’t have to be protected, make it private. Use the table
below as a guide.

eSciDoc Project

Coding Standards

Distribution: eSciDoc project
team

Changed by: Michael Franke Last changed: 23.03.2011 Page: 20 of 29
Path: eSciDoc_Coding_Standards

FIZ Karlsruhe proprietary information - for eScidoc-project use only -

Visibility Description Proper Usage

public A public method can be invoked by
any other method in any other object
or class.

When the method must be
accessed by objects and classes
outside of the class hierarchy in
which the method is defined.

protected A protected method can be invoked by
any method in the class it was defined,
any subclasses of that class, or any
class in the same package as the
defining class.

When the method provides
behavior that is needed
internally within the class
hierarchy but not externally.

package
(or default)

A method defined with package (or
default) protection is accessible to all
the other classes in the same
package, but not outside that package.

Be very careful when using this
visibility type.

private A private method can only be invoked
by other methods in the class in which
it is defined, but not in the subclasses.

When the method provides
behavior that is specific to the
class. Private methods are often
the result of refactoring, also
know as reorganizing, the
behavior of other methods within
the class to encapsulate one
specific behavior.

4.2.4 Method Size and One Screen Rule

In order to maintain maximum readability and maintainability, methods should strive to conform to
the “One Screen Rule”, meaning that the method is one screen or fewer statements long. This is
achievable using function decomposition and using helper functions. Methods should not be longer
than 100 lines.

A method should preferably do one thing, and the method name should reflect this accurately. If it
does more, ensure that this is reflected in the method name. If this leads to an ugly method name,
reconsider the structure of your code. If you had a function named
initPanelManagerAndReadAccountList , the code would probably benefit from a split into methods
named initializePanelManager and readAccountList .

4.2.5 Exceptions

Generate exceptions for any error conditions not handled by Java or any other exception handlers.
A rule of thumb is to generate errors early and often. It is better to be too extensive in error
handling rather than assuming that another portion of the code will catch errors.

Handle exceptions at appropriate hierarchical level. Each level of an application hierarchy should
cope with as many errors as it can. However, each level should pass errors it can't cope with to

eSciDoc Project

Coding Standards

Distribution: eSciDoc project
team

Changed by: Michael Franke Last changed: 23.03.2011 Page: 21 of 29
Path: eSciDoc_Coding_Standards

FIZ Karlsruhe proprietary information - for eScidoc-project use only -

higher levels. A level should not call methods from any higher levels when dealing with an error.
This introduces cyclic and unnecessary dependencies between levels of an application. Where
applicable, group exceptions via an exception hierarchy. All exceptions should be based on a
hierarchy.

A sub-system of an application or a service that has (or may have in the future) several different
types of errors should map each error with distinct names derived from a generic base. This allows
a user to catch all exceptions at a specific level without having to list all the exception types.

Example:

A function may call a File Access framework that throws the following execptions:
FileNotFoundException, FileLockedException and EndOfFileException. The calling function may
decide to handle all the exceptions from the IOException or handle each one individually.

4.2.6 Bracing and Nesting Styles

For all classes, the declaration shall begin in the leftmost column. The left brace should be
positioned in the next line as the class declaration and the right brace for the class must also
appear in the leftmost column.

In general, matching beginning braces should be positioned in the next line after the control
statement and ending braces should also be positioned in the same column as the statement. This
makes identifying statement blocks easier. All declarations and code inside the block must be
indented at least one level. A level is defined as 4 spaces. Ensure that your development
environment is set up to convert tabs to spaces.

Programming constructs must have the following form:

For loops:

for (<initialization>; <condition>; <increment>)
{
 <statements>
}

While loops:

while (<condition>)
{
 <statements>
}

If constructs:

if (<condition>)
{
 < statements >
}

eSciDoc Project

Coding Standards

Distribution: eSciDoc project
team

Changed by: Michael Franke Last changed: 23.03.2011 Page: 22 of 29
Path: eSciDoc_Coding_Standards

FIZ Karlsruhe proprietary information - for eScidoc-project use only -

If … else constructs:

if (<condition>)
{
 < statements >
}
else
{
 < statements >
}

If … else if constructs:

if (<condition>)
{
 < statements >
}
else if (<condition>)
{
 < statements >
}
else
{
 < statements >
}

Switch constructs:

switch (<variable>)
{
 case <value>:
 <statement>
 <statement>
 break;
 case <value>:
 <statement>
 <statement>
 break;
 default:
 <statement>
}

Try … catch constants:

try
{
 < statements >
}
catch (Exception_Type variableName)
{
 < statements >
}

eSciDoc Project

Coding Standards

Distribution: eSciDoc project
team

Changed by: Michael Franke Last changed: 23.03.2011 Page: 23 of 29
Path: eSciDoc_Coding_Standards

FIZ Karlsruhe proprietary information - for eScidoc-project use only -

4.2.7 Variables (general usage)

Declare only one variable per line of code.

Right Wrong

private int myWidth = 150;
private int myHeight = 50;

private int myWidth = 150,
 myHeight = 50;

Also, declare variables in semantic, not alphabetical, order.

Example

houseNumber
streetName
city
zip
country
inPostalCode
outPostalCode

4.2.8 Instance Variables

All variables should be initialized before they are accessed. Initialization may occur in either a
constructor or as a result of lazy initialization. Lazy initialization is the act of initializing variables in
their getter methods. This ensures that a variable is not initialized until it is actually needed. This is
especially helpful when the object to be retrieved is kept in persistent storage and could be very
expensive to build.

4.2.9 Local Variables

Use local variables to represent one thing only. In other words, do not reuse local variables within a
method. Whenever a local variable is used for more that one representation you make your code
more difficult to understand. The chance of bugs introduced to your code by other developers also
increases. Instead, declare a new descriptive variable for use.

eSciDoc Project

Coding Standards

Distribution: eSciDoc project
team

Changed by: Michael Franke Last changed: 23.03.2011 Page: 24 of 29
Path: eSciDoc_Coding_Standards

FIZ Karlsruhe proprietary information - for eScidoc-project use only -

Right Wrong

int accountIndex;
...
for (accountIndex = 0;
 i < myAccountList.size();
 accountIndex++)
{
 ...
}
...
// Swap elements
int arrayElement;
arrayElement = intArray[0];
intArray [0] = intArray [1];
intArray [1] = arrayElement;

int i;
...
for (i = 0;
 i < myAccountList.size();
 ++i)
{
 ...
}
...
// Swap elements:
i = intArray [0];
intArray [0] = intArray [1];
intArray [1] = i;

The two uses of i above on the right have nothing to do with one another. Creating unique
variables for each purpose makes your code more readable.

4.2.10 Collections

Each attribute collection should implement the following getters and setters:

Method Type Naming Convention Example

Getter for the collection get<CollectionName>() getMeterReadings()

Setter for the collection set<CollectionName>() setMeterReadings()

add an object into the
collection

add<CollectionItem>() addMeterReading()

remove an object from the
collection

remove<CollectionItem>() removeMeterReading()

4.2.11 Initialization

1. All variables, including instance and class variables, should be initialized at the point of
declaration if possible.

2. Java allows initialization of arrays using the same syntax as C and C++, by enclosing a
comma-delimited set of values in braces.

3. Java >=1.4 allows initializer blocks among the declarations. An initializer block is a section
of code enclosed in braces. There are two kinds of initializer blocks: static and instance.

eSciDoc Project

Coding Standards

Distribution: eSciDoc project
team

Changed by: Michael Franke Last changed: 23.03.2011 Page: 25 of 29
Path: eSciDoc_Coding_Standards

FIZ Karlsruhe proprietary information - for eScidoc-project use only -

Static initializer blocks are executed the first time a class is loaded by a ClassLoader. In general
static initialization blocks should be avoided for any nontrivial initialization task. The reason
for such judicious use is static initialization block errors are extremely difficult to debug. Error
handling is difficult within a static initializer, and as a result static initializer blocks should be
avoided if possible. During static initialization (class initialization), things happen in the following
order:

1. Class initialization of the superclass is performed, unless it has been done earlier.

2. Static variables are initialized and static initializer blocks are executed. This happens in the
order they are listed, from top to bottom. Instance variables, instance initializer blocks and
methods don’t figure into this.

Note that static and instance initializer blocks are allowed in Java >=1.4. Static initializer blocks are
executed in order when the class is first instantiated; instance initializer blocks are executed in
order after the superclass constructor runs, but before the class constructor runs.

Instance initializer blocks are executed whenever a class is instantiated. During object
initialization (instance initialization), things happen in the following order:

1. If this is the first time the class is instantiated, all the class (static) initialization takes place.

2. We enter a constructor. If we have not specified a constructor, the compiler supplies a
default constructor with no arguments automatically.

3. The superclass constructor is called. If your constructor does not explicitly invoke a
superclass constructor, the default (argument-less) superclass constructor is called
anyway.

4. All instance variables are initialized and instance initializer blocks are executed. This
happens in the order they are listed, from top to bottom. Class variables, class initializer
blocks and methods don’t figure into this.

Use initializer blocks to perform any initialization that can’t be performed by direct variable
initialization; put each initializer block immediately following the variable in question. In the
examples below, note that the array can be initialized without using an initializer block, while the
vector object requires one because of the calls to the addElement method.

eSciDoc Project

Coding Standards

Distribution: eSciDoc project
team

Changed by: Michael Franke Last changed: 23.03.2011 Page: 26 of 29
Path: eSciDoc_Coding_Standards

FIZ Karlsruhe proprietary information - for eScidoc-project use only -

Example

private Vector listOfSomething = new Vector();
{ // Instance initializer block
 listOfSomething.addElement(someObject);
 listOfSomething.addElement(anotherObject);
}

private static int[] multipliers = {
 5, 4, 3, 2, 7, 6, 5, 4, 3, 2};

private static MyClass myClass = new MyClass();
static
{ // Static initializer block
 myClass.setValue(someValue);
}

4.3 Documentation for Java Programs

Comments should add to the clarity of your code. The reason why you document your code is to
make it more understandable to you, your coworkers, and to any other developer who comes after
you. Well documented code is readable and easier to maintain. When commenting code, you
should:

• Only comment confusing/interesting calls

• Ensure that comments are valuable, not redundant

4.3.1 Comments

Java has three styles of comments: Documentation comments start with /** and end with */, C-style
comments which start with /* and end with */, and single-line comments that start with // and go
until the end of the source-code line. In the chart below is a summary of the suggested use for
each type of comment, as well as several examples.

Usage Example

Use documentation comments
directly before declarations of
interfaces, classes and methods to
document them. Documentation
comments are processed by javadoc,
see below, to create external
documentation for a class.

/**
 * A participant is
 * any organization who bids on
 * energy or submit meter data.
 *
 * @author $Author$
 */

Use single line comments internally
within methods for single line // Do a double-flip.

eSciDoc Project

Coding Standards

Distribution: eSciDoc project
team

Changed by: Michael Franke Last changed: 23.03.2011 Page: 27 of 29
Path: eSciDoc_Coding_Standards

FIZ Karlsruhe proprietary information - for eScidoc-project use only -

comments or to comment out
sections of code.

...

Use block comments to describe
implementation details like
algorithms or data structures

/*
 * Here is a block comment with
 * some very special formatting.
 *
 * one
 * two
 * three
 */

Included in Sun’s Java Development Kit (JDK) is a program called javadoc that processes Java
code files and produces external documentation, in the form of HTML files, for your Java programs.
You should refer to the Javadoc standards in the following section and the JDK javadoc
documentation for further details.

4.3.2 Classes

Every class or interface definition should be preceded by a javadoc description. This description
should follow the format listed below:

Example

/**
 * This class blah...
 *
 * @author Foo Bar (initial creation)
 * @author $Author$ (last modification)
 * @version $Revision$ $LastChangedDate$
 */

Each class has to have two @author-tags in the header. One to identify the initial creator of the
class, and another to identify the person who did the last modification of the class. All following
methods are written by the initial author, unless a method has an @author-tag of its own.

4.3.3 Methods

Each method that has a scope wider than “private” must have a specification block associated with
it.

Method specification format:

/**
 * <Method description>
 *
 * @param parameter-name description
 * @return return-description
 * @exception exception-description
 */

eSciDoc Project

Coding Standards

Distribution: eSciDoc project
team

Changed by: Michael Franke Last changed: 23.03.2011 Page: 28 of 29
Path: eSciDoc_Coding_Standards

FIZ Karlsruhe proprietary information - for eScidoc-project use only -

Major changes of existing methods should be documented in the code by adding the name of the
editor followed by a detailed description of what has been changed in this method. If the changes
belong to a documented bug the bug ID should be added as well.

Example

/**
 * This method will assign a new Location
 * to the role.
 *
 * @param location the new Location
 */
public void setLocation(Location location)
{
 ...
}

4.3.4 Variables

Although variable names should be chosen to indicate their purpose, if needed for clarity an inline
comment (//) describing the variable can be placed on the line with the variable declaration.

Example

Public class Window
{
 ...
 private Window parent; // the Window I was crea ted from

4.3.5 White Space

Use a blank line to separate logical groups of code and method definitions.

eSciDoc Project

Coding Standards

Distribution: eSciDoc project
team

Changed by: Michael Franke Last changed: 23.03.2011 Page: 29 of 29
Path: eSciDoc_Coding_Standards

FIZ Karlsruhe proprietary information - for eScidoc-project use only -

Example

public void addCustomer(Customer newCustomer)
 throws InvalidCustomerException
{
 if(newCustomer.isValidated())
 {
 getCustomerList().add(newCustomer);
 }
 else
 {
 throw new InvalidCustomerException();
 }
}

public Customer getCustomer(int customerKey)
{
 return getCustomerList().getElement(customerKey);
}

