

Unicode
and the Storage of Data

Jost Gippert

Berlin, 25.10.2007

Outline

• Background of the Unicode Standard

• Questions of Data Storage and Retrieval

• Strategies and Recommendations
• Summary

Two sorts of text encoding:

• Encoding of CHARACTERS

• Encoding of STRUCTURAL ELEMENTS
OF TEXTS (“Formatting”)

• UNICODE is about the former, not the
latter

Background of UNICODE

• Encoding of characters - a history of
chaos

Encoding from ”stone age” to
UNICODE: Rigveda

Encoding from “stone age” to
UNICODE: Greek “Beta-Code”

Encoding from “stone age” to
UNICODE: Avesta

Encoding from “stone age” to
UNICODE: Avesta: 1985

Encoding from “stone age” to
UNICODE: Avesta

Portation steps:
from WP4 to WP5 (1990)

(1st 16-bit encoding system)

Portation steps:
from WP5 to WP9

(automatic, but failing)

Portation steps:
from WP5 to Word 2000

(automatic, but failing)

Portation steps:
from WP5 to HTML (UTF-8)

(special programming required)

Portation steps:
from WP5 to HTML (UTF-8)

(special programming required)

Rendering:
UTF-8 = representation of UNICODE

(still requires special fonts, e.g. Arial Unicode MS)

N.B.

• We have not talked about original scripts
yet!

Encoding of Characters
summarized

• Restrictions of encoding standards
– 7-bit: max. 128 different characters

– 8-bit: max. 256 diff. characters (>> “1-byte”)
– 16-bit: max. 65536 diff. chars. (>> “2-byte”)
– 32-bit: max. 4,294,967,296 d.c. (>> “4-byte”)

Encoding of Characters

• Scope of encoding standards
– 7-bit: “EBCDIC”, “ASCII”

• Mainframe computers, first generation of PCs, web
applications (URLs, e-mail) until recently

– 8-bit: “IBM”, “Mac-OS”, “ANSI”, “ISO 8859”:
“Codepages”

• PCs (DOS, Windows < NT 4), Macs (< OS 10), web
applications (URLs, web pages, e-mail) of today

– 16-bit: “WordPerfect 5 ff.” (incomplete), “UNICODE”
• PCs (Windows > NT 3), Macs (> OS 9), web applications

(URLs since 2003, web pages since 1995, e-mail)

– 32-bit: “ISO 10646”, “extended UNICODE”
• Restricted use

Encoding of Characters:
Portation of standards

Encoding of Characters:
Character repertoires

Encoding of Characters:
Character repertoires

Encoding of Characters:
Character repertoires

Encoding of Characters:
Character repertoires

Encoding of Characters:
Character repertoires

Encoding of Characters:
Font mapping

Encoding of Characters:
Font mapping

Encoding of Characters:
“Official” font mapping: ISO 8859 Codepages

Encoding of Characters:
“Official” font mapping: ISO 8859

• http://titus.uni-frankfurt.de/unicode/iso8859/iso8859.htm

• N.B. Other encoding standards for Cyrillic, Greek etc. acknowledged

http://titus.uni-frankfurt.de/unicode/iso8859/iso8859.htm

Encoding of Characters:
Scripts covered by UNICODE (5.0)

• http://www.unicode.org/

http://www.unicode.org/
http://www.unicode.org/
http://www.unicode.org/

Encoding of Characters:
UNICODE blocks

• http://titus.uni-frankfurt.de/unicode/unitest.htm
• http://www.unicode.org/

http://titus.uni-frankfurt.de/unicode/unitest.htm
http://www.unicode.org/
http://www.unicode.org/

Encoding of Characters:
UNICODE blocks (examples)

Encoding of Characters:
UNICODE blocks (examples)

Encoding of Characters:
UNICODE blocks (examples)

Recent additions:
UNICODE blocks (examples)

Ancient languages:
“Extended” UNICODE blocks (examples)

Yet to be implemented:

• Avestan

• Pahlavi

• Manichean
• Sogdian

• etc.

Co-existence of encoding standards:
Bad case scenario: Non-standard fonts

• File to be exchanged (Georgian word list, MS-Word 6)

Co-existence of encoding standards:
Bad case scenario: Non-standard fonts

• File opened with MS-Word XP (assumption: Japanese)

Co-existence of encoding standards:
Bad case scenario: Non-standard fonts

• File opened with Open Office 1.1 (assumption: Roman)

Co-existence of encoding standards:
Bad case scenario: Non-standard fonts

• Same after applying correct Georgian 8-bit font

Co-existence of encoding standards:
Bad case scenario: Non-standard fonts

• Same after applying equivalent transcriptional 8-bit font

Co-existence of encoding standards:
Worst case scenario: Mixture of 8- and 16-bit

• MS-Word XP after applying correct Georgian 8-bit font

Co-existence of encoding standards:
Worst case scenario: Mixture of 8- and 16-bit

• The MS-Word strategy:
– Checks whether the document is Unicode-encoded
– If not, checks whether the character distribution might

meet the “typical” distribution of one of the known
codepages

– If yes, assumes that codepage to be represented
– Converts the 8-bit characters of the codepage into the

equivalent characters of Unicode

– Stores the Unicode characters in memory
– Applying 8-bit fonts will be no remedy as they do not

meet the Unicode encoding assumed and applied

Example: Comparison of Shoebox
and Toolbox (Unicode) encoding:

Comparison of Shoebox and
Toolbox (Unicode) encoding:

How to avoid the worst case
scenario

• Requirements for text data exchange:
– If 8-bit encoding is required, mixing up several fonts

with a different encoding in the document should be
avoided

– Keep track of font-and-encoding
– Inform users about all this and provide fonts (if legal)
– TRY TO USE UNICODE ENCODING WHEREVER

POSSIBLE

Encoding of Characters:
How to avoid the worst case scenario

• Recommended strategy for data storage (archiving):
– Convert all 8-bit documents into 16-bit Unicode

documents
– Avoid storage of proprietary formats (e.g., MS-Word)

Problems of Unicode encoding

– Byte storage:
• UTF-16 vs. UTF-8 vs. UTF-7 (vs. U+FFFF ...)

– Problems of “Non-Uniqueness”
• Problems of the “Private Use Area”

• Problems of “Normalization”

– Problems of “Too-Uniqueness”
• Problems of bidirectionality

Byte storage:
Desired output

Byte storage:
UTF-8

Byte storage:
UTF-16

UTF-8 vs. UTF-16 encoding:

Characteristics

• UTF-16
– constant byte rate for Latin and other scripts
– ANSI elements readable as such (depending

on viewer capabilities)

• UTF-8
– low byte rate with Latin-based text
– ASCII elements readable as such
– high byte rate with “exotic” scripts
– supported by many viewers, browsers...

Recommendation:

–Prefer UTF-8 for the storage of
textual data that are meant for
instant retrieval

–Prefer UTF-16 for the long-time
storage of data

Non-Uniqueness of Unicode:
Font mapping anew: the PUA

Non-Uniqueness in Unicode
Multiple code points: Arabic numerals

Non-Uniqueness in Unicode
Multiple code points: Arabic “presentation forms”

Non-Uniqueness in Unicode
“Precomposed” characters

“Normalization” problems

“Normalization” problems

“Normalization” problems

“Normalization”: What to store?

• Recommended strategy for precomposed
characters:
– a) Total decomposition (NFD)
– b) Maximal composition (NFC)

“Normalization” strategies

“Normalization”: What to store?

• Recommended strategy for “compatibility
equivalents”?
– a) Total decomposition (NFKD)
– b) Maximal canonical composition (NFKC)

“Normalization” strategies

“Normalization” strategies

“Normalization” strategies

“Normalization” strategies

“Normalization” strategies

“Normalization” strategies

“Normalization” strategies

Recommendations as to
“Normalization”:

• Question of storage vs. question of
retrieval?
– File size?
– Sorting
– Searching
– Comparing

• “On the fly” interpretation of data
– today?
– tomorrow?

“Too-Uniqueness” problems:
Bidirectionality: Arabic punctuation

• Missing (> Latin equivalents):
– “Normal” full stop
– Exclamation mark
– Quotation marks
– Parentheses, brackets, braces...

“Bidirectionality” character types

“Bidirectionality” character types
Misbehaviour problems

Recommendations:

• This is an implementation problem, not a
storage problem!
– Arguing with software providers for a correct

treatment?

– Arguing with UNICODE.ORG for an addition
of RLM punctuation marks?

“Original” scripts vs.
transcription / transliteration?

• “Original” scripts preferred by native
speakers / communities?

• Transcriptions preferred by linguists?

Twofold ELAN output

“Original” script vs.
transcription / transliteration?

• Ideal scenario:
– transcription automatically derivable from

rendering in original script and

– vice versa

• No problems with Cyrillic vs. Latin

• Manifold problems with Arabic vs. Latin

(Narrow) Transcription
<> Cyrillic script (no font mapping!)

(Narrow) Transliteration
<> Arabic script

(Broad) Transliteration
<> Arabic script

(Broad) Transcription
<> Arabic script

“Original” script vs.
transcription / transliteration?

• Recommendations:
– For data storage choose the most informative

rendering available
• with a unique representation of all consonant and

vowel phonemes (“broad” transcription type)

• do care for convertibililtiy

– N.B. a plain ASCII-based encoding may
suffice (!)

Summary

• The struggle for a reliable encoding basis
is approaching its end with the UNICODE
standard developing
BUT

• Inconsistencies of the UNICODE standard
should be considered carefully for data
storage right from the beginning

