Requirements of eScience and Grid Projects Towards Long-Term Preservation of Research Data

Jens Klump, GFZ Potsdam
Göttingen, 2008-06-19
Agenda

Results from the study „Requirements of eScience and Grid Projects Towards Long-Term Preservation of Research Data“.

- Context, dealing with research data
- Study outline, Materials, Methods
- Results from interviews
- Recommendations to stakeholders
- Conclusions
Context

• Study commissioned by „Network of Expertise in Long-term STOrage of Digital Resources“ (nestor)
• Focus:
 - Application in the context of German projects,
 - Recommendations for digital long-term preservation in the context of eScience and Grid.
• General aspects of digital long-term preservation have already been covered by other studies.
Why Archive Data?

- Archiving research data from projects ...
 - saves time and money by avoiding duplication,
 - improves quality of research by making results verifiable.
- Most data are at present not accessible.
- Archiving of research data is still unsystematic.
The Scientific Workflow

- Workflows in eBusiness and eGovernment are characterised by persistence and the requirement for transactional behaviour.
- Scientific workflows are characterised by \textit{ad-hoc} changes, depending on the outcome of the preceding experimental step.
Definition of „Long-Term“

- Research data face their greatest risk of loss after the end of the funding period.
- For the context of this study we defined „long-term“ as „re-usable and reliable preservation well beyond the end of the project“.
- The duration of preservation is commonly defined in a policy or legal framework.
Definition of Long-Term

- Computer Science: > 5 yr.
- DFG, MPG: > 10 yr.
- Engineering: > 30 yr.
- Linguistics: > 100 yr.

- At present the domain of memory institutions (libraries, museums, archives).
The OAIS reference model describes, how humans and technical systems interact in the long-term preservation of digital objects.
Materials and Methods

- Focus group: Projects funded by BMBF in April 2007.
- Method: Qualitative interviews with stakeholders in projects. The questionnaire served as a guideline for the interviews.
- First results were presented at GES 2007 and discussed with stakeholders from projects.
Interview Partners

- Grid projects funded by BMBF and operating in April 2007
 - AstroGrid-D (astronomy, astrophysics)
 - C3-Grid (climate models)
 - HEP-Grid (high energy physics)
 - InGrid (engineering)
 - MediGrid (medical and life sciences)
 - TextGrid (arts and humanities text processing)
Interview Partners

- eScience projects funded by BMBF and operating in April 2007:
 - eSciDoc (scholarly communication platform)
 - Hyperimage (semantic image annotation)
 - Im Wissensnetz (information networking)
 - Ontoverse (life sciences)
 - SYNERGIE (computer sciences)
 - WIKINGER (information networking and repository)
 - WISENT (energy meteorology)
Interview Topics

- Data volume and complexity
- Dealing with metadata
- The semantic web
- Access to data and rights management
- Virtual organisations and sustainability
- Best practice examples
- Synergies between Grid/eScience and digital long-term preservation
Data Volumes and Complexity

• Après nous, le déluge (des donées)?
• The approach is very discipline specific.
• Data volumes vary by several orders of magnitude.
• Grid project data can be very complex.
• Policies range from 5 years (computer science) to indefinitely (linguistics).
• Operating costs of storage are a limiting factor.
Metadata

- Metadata standards are problematic.
- Standards are often not accepted in the communities and seen as under/over complex.
- Communities are still divided over comprehensive vs. light-weight metadata schemas.
Metadata

- Metadata on formats and file types are rarely collected. MIME-type is not enough!
- Too little attention is paid to file formats and their suitability for long-term archiving.
- Provenance and processing metadata vary.
Capture and processing of semantic relations between data objects is a key objective in many projects (predominantly eScience).

Semantic relations to physical objects ("internet of things") are found in very specific contexts (e.g. pathology specimens).

Capture and management of implicit knowledge is practiced in some projects.

SME industrial partners are sceptical ("processes can not yet be copied").
Access and Rights

• The degree of data sharing depends on established practices in the communities.
• Machine readable licences would help.
• Distributed data storage would be interesting for SME, but access management is not yet of fine enough granularity.
• The role of the systems administrator is seen as critical (intransparent, lack of trust criteria).
Access and Rights

- Research is needed in identity and credentials management.
- Long-term management of certificates poses new questions (e.g. migration of keys, orphaned certificates).
VOs and Sustainability

- Only a minority of VO have policies on long-term preservation.
- Communities are aware of this issue and are formulating policies.
- In many cases, long-term preservation is seen as beyond the scope of the project.
- Roles and responsibilities in VO are often not formalised.
- More research is needed into the management of VO.
Recommendations

- Implementation of a testbed for long-term preservation in Grid environments.
- Research into application of Grid technologies for long-term preservation (e.g. format migration, ingest process, emulation, ...)
- Communication of best practice examples to communities.
Recommendations

- More effort into documentation of provenance, processes and implicit knowledge.
- Adaptation of semantic web technologies towards a semantic grid.
- Research into digital rights management (credentials, long-term aspects of certificates).
- Research into VO management.
Conclusions

- eScience and Grid projects are aware of the challenges of long-term preservation.
- A number of technical and organisational issues need to be resolved.
- Synergies between Grid technology and long-term preservation should be explored in a testbed project.
- More communication of best practices among and between communities is needed.
Acknowledgements

• Funding was provided by BMBF through the „Network of Expertise in Long-term STOrage of Digital Resources“ (nestor).
• The author would also like to thank the interview partners, the members of the nestor working group on Grid/eScience, and the participants at the GES 2007 nestor workshop for their input and discussions.